

Advanced Interfaces for Utility Scale PV

ARPA-E Workshop February 2011

Imagine an AC-PV World

Let's transfer those advantages to PV

Decentralized Electronics

Advantages

- LCOE over life of system
- Simplicity of installation
- Safety
- Wiring Loss Reduction
- Maintenance Cost Reduction

Requirements

- Reliability = survivability
- No single point of failure
- FRU for bankability
- Power Quality (THD)

Promises for the near future

SMART grid features

3 Phase AC at the Panel

- Advantages at the panel level
 - Energy Harvesting = MPPT at the Panel
 - Improvements range from 5 15% (?)
 - Significant for localized shading row to row; localized dirt
 - Safety: 600 HV DC hazard (NEC requirements)
 - Concern during design, installation and repair
 - Ongoing concern about DC to DC arcing
 - Examples WW of rare but documented problems
 - Not on financiers or insurers radar screen yet
 - Parallel vs Series
 - No more Christmas light effect
 - Hot Spot Suppression
 - MPPT searches right no cell in reverse bias
 - Safety and survivability

Balanced 3 phase AC

Scalable Parallel 3-Phase Delta Power Bus

Inherently Balanced 3-Phase Power Output

Plant Design

Simplicity

- String length
- Panel matching = no issue
 - Install or replacement
- Powerline Communications
 - No additional comms trenching required

Utility scale cluster design + transformers

- Simplified repetitive design
- Minimize DC home runs
- Accessibility

Wiring losses

AC vs DC losses

System Simplification Opportunity

Operations & Maintenance

- High(er) Plant Availability Possible
 - No single point of failure
 - No routine downtime/replacement for electronics
 - Reduced COO (cost of ownership)
- Leverage panel monitoring
 - Managed maintenance vs routine truck rolls
 - Instead of time warranty => energy warranty
 - Localized diagnostic capability
 - Efficient repair/replacement
- Net: 8 10% more energy over life

SMART Grid Potential

- Low THD (< 1.5%)
- Power Factor Control
- Reactive Power Management
- Low Voltage Ride Through
- Frequency Ride Through

Opportunity for Cost Reduction

- Consumer Electronics (Style) Device for Industrial Use
- Standard Semiconductor ICs
 - Easily cost reduced with volume (30 50%)
- Film or Ceramic Caps
- RoHS compliant
- Match coeff of thermal expansion

- Remember ATS 3 is still working
 - **1**967 -> 2000

Conclusions

- Distributed electronics can afford considerable cost reductions
 - First Cost and total cost of ownership
- Increased Energy Harvesting
- Opportunities for standardization and simplification of design

